1,132 research outputs found

    Peak-constrained least-squares optimization

    Full text link

    Gravity coupled with matter and foundation of non-commutative geometry

    Full text link
    We first exhibit in the commutative case the simple algebraic relations between the algebra of functions on a manifold and its infinitesimal length element dsds. Its unitary representations correspond to Riemannian metrics and Spin structure while dsds is the Dirac propagator ds = \ts \!\!---\!\! \ts = D^{-1} where DD is the Dirac operator. We extend these simple relations to the non commutative case using Tomita's involution JJ. We then write a spectral action, the trace of a function of the length element in Planck units, which when applied to the non commutative geometry of the Standard Model will be shown (in a joint work with Ali Chamseddine) to give the SM Lagrangian coupled to gravity. The internal fluctuations of the non commutative geometry are trivial in the commutative case but yield the full bosonic sector of SM with all correct quantum numbers in the slightly non commutative case. The group of local gauge transformations appears spontaneously as a normal subgroup of the diffeomorphism group.Comment: 30 pages, Plain Te

    RiceWrist Robotic Device for Upper Limb Training: Feasibility Study and Case Report of Two Tetraplegic Persons with Spinal Cord Injury

    Get PDF
    Regaining upper extremity function is the primary concern of persons with tetraplegia caused by spinal cord injury (SCI). Robotic rehabilitation has been inadequately tested and underutilized in rehabilitation of the upper extremity in the SCI population. Given the acceptance of robotic training in stroke rehabilitation and SCI gait training, coupled with recent evidence that the spinal cord, like the brain, demonstrates plasticity that can be enhanced by repetitive movement training such as that available with robotic devices, it is probable that robotic upper extremity training of persons with SCI could be clinically beneficial. The primary goal of this pilot study was to test the feasibility of using a novel robotic device –the RiceWrist Exoskeleton- for rehabilitation of the upper limbs (UL) of two tetraplegic persons with incomplete SCI. Two pilot experiments were conducted. Experiment 1was the first novel attempt to administer treatment with the RiceWrist. The left UL of a tetraplegic subject was treated during seven therapy sessions. The subject’s feedback and the investigator’s obser-vations were used to enhance the robotic device and the corresponding graphical-interface. In Experiment 2, a second tetra-plegic subject underwent 10 three-hour training sessions administered by a physical therapist. Smoothness factor (FS) –a new measure developed in Experiment 1- was used as the primary outcome to test the subject’s performance before and after the training. The RiceWrist was modified according to the feedback obtained in Experiment 1. Thereafter, the device was suc-cessfully administered for upper limb training of the tetraplegic individual. Noticeable improvements in FS were observed for the stronger arm of the subject who completed 10 sessions of training. Improvements were also observed in the subject’s hand according to the Jebsen-Taylor Hand Function Test. Results from this study suggest a potential application of the RiceWrist for rehabilitation of SCI individuals and offer valuable information regarding development of UL robotic devices for this population

    Pain Catastrophizing and Fear of Pain predict the Experience of Pain in Body Parts not targeted by a Delayed-Onset Muscle Soreness procedure

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The present study examined whether pain catastrophizing and pain-related fear predict the experience of pain in body regions that are not targeted by an experimental muscle injury protocol. A delayed-onset muscle soreness (DOMS) protocol was used to induce pain unilaterally in the pectoralis, serratus, trapezius, latissimus dorsi, and deltoid muscles. The day after the DOMS protocol, participants were asked to rate their pain as they lifted weighted canisters with their targeted (ie, injured) arm and their nontargeted arm. The lifting task is a nonnoxious stimulus unless participants are already experiencing musculoskeletal pain. Therefore, reports of pain on the nontargeted arm were operationalized as pain in response to a nonnoxious stimulus. Eighty-two healthy university students (54 men, 28 women) completed questionnaires on pain catastrophizing and fear of pain and went through the DOMS protocol. The analyses revealed that catastrophizing and pain-related fear prospectively predicted pain experience in response to a nonnoxious stimulus. The possible mechanisms underlying this effect and clinical implications are discussed

    An Experimental Approach to Examining Psychological Contributions to Multisite Musculoskeletal Pain.

    Get PDF
    The present study examined the prospective value of pain catastrophizing, fear of pain, and depression in the prediction of multisite musculoskeletal pain following experimentally induced delayed-onset muscle soreness (DOMS). The study sample consisted of 119 (63 females, 56 males) healthy university students. Measures of pain catastrophizing, fear of pain, and depression were completed prior to the DOMS induction procedure. Analyses revealed that pain catastrophizing and fear of pain prospectively predicted the experience of multisite pain following DOMS induction. Analyses also revealed that women were more likely to experience multisite pain than men. There was no significant relation between depressive symptoms and the experience of multisite pain. The discussion addresses the mechanisms by which pain catastrophizing and fear of pain might contribute to the spreading of pain. Clinical implications of the findings are also addressed. Perspective: The results of this experimental study suggest that pain catastrophizing and fear of pain might increase the risk of developing multisite pain following musculoskeletal injury

    SEOM clinical guidelines for the treatment of small-cell lung cancer (SCLC) (2019)

    Get PDF
    Small-cell lung cancer (SCLC) accounts for 15% of lung cancers. Only one-third of patients are diagnosed at limited stage. The median survival remains to be around 15-20 months without significative changes in the strategies of treatment for many years. In stage I and IIA, the standard treatment is the surgery followed by adjuvant therapy with platinum-etoposide. In stage IIB-IIIC, the recommended treatment is early concurrent chemotherapy with platinum-etoposide plus thoracic radiotherapy followed by prophylactic cranial irradiation in patients without progression. However, in the extensive stage, significant advances have been observed adding immunotherapy to platinum-etoposide chemotherapy to obtain a significant increase in overall survival, constituting the new recommended standard of care. In the second-line treatment, topotecan remains as the standard treatment. Reinduction with platinum-etoposide is the recommended regimen in patients with sensitive relapse (≥ 3 months) and new drugs such as lurbinectedin and immunotherapy are new treatment options. New biomarkers and new clinical trials designed according to the new classification of SCLC subtypes defined by distinct gene expression profiles are necessary

    On Measuring Split-SUSY Neutralino and Chargino Masses at the LHC

    Full text link
    In Split-Supersymmetry models, where the only non-Standard Model states produceable at LHC-energies consist of a gluino plus neutralinos and charginos, it is conventionally accepted that only mass differences among these latter are measureable at the LHC. The present work shows that application of a simple `Kinematic Selection' technique allows full reconstruction of neutralino and chargino masses from one event, in principle. A Monte Carlo simulation demonstrates the feasibilty of using this technique at the LHC.Comment: 17 pages, 4 figures; EPJC versio

    Citizen Science 2.0 : Data Management Principles to Harness the Power of the Crowd

    Get PDF
    Citizen science refers to voluntary participation by the general public in scientific endeavors. Although citizen science has a long tradition, the rise of online communities and user-generated web content has the potential to greatly expand its scope and contributions. Citizens spread across a large area will collect more information than an individual researcher can. Because citizen scientists tend to make observations about areas they know well, data are likely to be very detailed. Although the potential for engaging citizen scientists is extensive, there are challenges as well. In this paper we consider one such challenge – creating an environment in which non-experts in a scientific domain can provide appropriate and accurate data regarding their observations. We describe the problem in the context of a research project that includes the development of a website to collect citizen-generated data on the distribution of plants and animals in a geographic region. We propose an approach that can improve the quantity and quality of data collected in such projects by organizing data using instance-based data structures. Potential implications of this approach are discussed and plans for future research to validate the design are described

    Composite vertices that lead to soft form factors

    Get PDF
    The momentum-space cut-off parameter Λ\Lambda of hadronic vertex functions is studied in this paper. We use a composite model where we can measure the contributions of intermediate particle propagations to Λ\Lambda. We show that in many cases a composite vertex function has a much smaller cut-off than its constituent vertices, particularly when light constituents such as pions are present in the intermediate state. This suggests that composite meson-baryon-baryon vertex functions are rather soft, i.e., they have \Lambda considerably less than 1 GeV. We discuss the origin of this softening of form factors as well as the implications of our findings on the modeling of nuclear reactions.Comment: REVTex, 19 pages, 5 figs(to be provided on request
    • …
    corecore